Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Technical Paper

Pressure-Based Knock Measurement Issues

2017-03-28
2017-01-0668
Highly time resolved measurements of cylinder pressure acquired simultaneously from three transducers were used to investigate the nature of knocking combustion and to identify biases that the pressure measurements induce. It was shown by investigating the magnitude squared coherence (MSC) between the transducer signals that frequency content above approximately 40 kHz does not originate from a common source, i.e., it originates from noise sources. The major source of noise at higher frequency is the natural frequency of the transducer that is excited by the impulsive knock event; even if the natural frequency is above the sampling frequency it can affect the measurements by aliasing. The MSC analysis suggests that 40 kHz is the appropriate cutoff frequency for low-pass filtering the pressure signal. Knowing this, one can isolate the knock event from noise more accurately.
Journal Article

Prediction of the Nozzle Flow and Jet Characteristics at Start and End of Injection: Transient Behaviors

2015-09-01
2015-01-1850
This paper reports investigations on diesel jet transients, accounting for internal nozzle flow and needle motion. The calculations are performed with Large Eddy Simulation (LES) turbulence model by coupling the internal and external multiphase flows simultaneously. Short and multiple injection strategies are commonly used in internal combustion engines. Their features are significantly different from those generally found in steady state conditions, which have been extensively studied in the past, however, these conditions are seldom reached in modern engines. Recent researches have shown that residual gas can be ingested in the injector sac after the end-of-injection (EOI) and undesired dribbles can be produced. Moreover, a new injection event behaves differently at the start-of-injection (SOI) depending on the sac initial condition, and the initial spray development can be affected for the first few tens of μs.
Technical Paper

Potential Cost Savings of Combining Power and Energy Batteries in a BEV 300

2016-04-05
2016-01-1213
Present-day battery technologies support a battery electric vehicle with a 300mile range (BEV 300), but the cost of such a vehicle hinders its large-scale adoption by consumers. The U.S. Department of Energy (DOE) has set aggressive cost targets for battery technologies. At present, no single technology meets the cost, energy, and power requirements of a BEV 300, but a combination of multiple batteries with different capabilities might be able to lower the overall cost closer to the DOE target. This study looks at how such a combination can be implemented in vehicle simulation models and compares the vehicle manufacturing and operating costs to a baseline BEV 300. Preliminary analysis shows an opportunity to modestly reduce BEV 300 energy storage system cost by about 8% using a battery pack that combines an energy and power battery. The baseline vehicle considered in the study uses a single battery sized to meet both the power and energy requirements of a BEV 300.
Technical Paper

Portable Power from Nonportable Energy Sources

1963-01-01
630470
To meet future world energy demands, the engineer’s task will be to develop, through research, means of supplying new sources of energy. Though nuclear processes and solar energy will provide future energy, they are not readily adaptable to portable power systems due to inherent shortcomings. Energy can be supplied to portable power systems by energy storage systems using chemical, mechanical, or electrical forms, or it may be supplied through energy-in-transit systems. Technical discussion of various systems is presented. To develop suitable energy storage systems, thought must be given to problems of construction, operation, maintenance, and economics. Research is necessary to determine which chemical fuels are most adaptable for internal combustion engines.
Technical Paper

Plug-and-Play Software Architecture to Support Automated Model-Based Control Process

2010-10-05
2010-01-1996
To reduce development time and introduce technologies to the market more quickly, companies are increasingly turning to Model-Based Design. The development process - from requirements capture and design to testing and implementation - centers around a system model. Engineers are skipping over a generation of system design processes based on hand coding and instead are using graphical models to design, analyze, and implement the software that determines machine performance and behavior. This paper describes the process implemented in Autonomie, a plug-and-play software environment, to evaluate a component hardware in an emulated environment. We will discuss best practices and show the process through evaluation of an advanced high-energy battery pack within an emulated plug-in hybrid electric vehicle.
Technical Paper

Performance, Efficiency, and Emissions Evaluation of a Supercharged, Hydrogen-Powered, 4-Cylinder Engine

2007-01-23
2007-01-0016
This paper presents the results of efficiency, emissions, and performance testing of a supercharged, hydrogen-powered, four-cylinder engine. Tests were run at various speeds, loads, and air/fuel ratios in order to identify advantageous operating regimes. The tests revealed that a maximum thermal brake efficiency of 37% could be achieved and that certain operating regimes could achieve NOx emissions as low as 1 ppm without aftertreatment. Measurement of cylinder pressure traces in all four cylinders allowed a detailed assessment of cylinder-cylinder deviation. Several measures to further increase hydrogen engine performance in order to reach the goals set by the U.S. Department of Energy are being discussed.
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
Technical Paper

Particulate Emissions From a Modern Light Duty CIDI Engine

2002-06-03
2002-01-1869
This paper reports an effort to measure particulate emissions from a modern light duty CIDI engine equipped with a common-rail fuel injection system, a closed loop EGR system and a state-of-the-art aftertreatment system. Particulate emissions both upstream and downstream of the catalyst were measured using an SMPS system and a TEOM while operating the engine at various steady-state conditions. The measurements upstream of the catalyst show that the particulate emissions are strongly dependent on the engine speed, load and EGR conditions. The measurements downstream of the catalyst show the effectiveness of the catalyst in reducing particulate mass emissions by 20-80%, with reductions in particulate mean diameters averaging about 10%. The trends observed are discussed in terms of previously established particulate formation and destruction mechanisms.
Technical Paper

Particle Size and Number Emissions from RCCI with Direct Injections of Two Fuels

2013-04-08
2013-01-1661
Many concepts of premixed diesel combustion at reduced temperatures have been investigated over the last decade as a means to simultaneously decrease engine-out particle and oxide of nitrogen (NO ) emissions. To overcome the trade-off between simultaneously low particle and NO emissions versus high "diesel-like" combustion efficiency, a new dual-fuel technique called Reactivity Controlled Compression Ignition (RCCI) has been researched. In the present study, particle size distributions were measured from RCCI for four gasoline:diesel compositions from 65%:35% to 84%:16%, respectively. Previously, fuel blending (reactivity control) had been carried out by a port fuel injection of the higher volatility fuel and a direct in-cylinder injection of the lower volatility fuel. With a recent mechanical upgrade, it was possible to perform injections of both fuels directly into the combustion chamber.
Technical Paper

Parametric Examination of Filtration Processes in Diesel Particulate Filter Membranes with Channel Structure Modification

2010-04-12
2010-01-0537
The limited spatial area in conventional diesel particulate filter (DPF) systems requires frequent regenerations to remove collected particulate matter (PM) emissions, consequently resulting in higher energy consumption and potential material failure. Due to the complex geometry and difficulty in access to the internal structure of diesel particulate filters, in addition, many important characteristics in filtration processes remain unknown. In this work, therefore, the geometry of DPF membrane channels was modified basically to increase the filtration areas, and their filtration characteristics were evaluated in terms of pressure drop across the DPF membranes, effects of soot loading on pressure drop, and qualitative soot mass distribution in the membrane channels. In this evaluation, an analytical model was developed for pressure drop, which allowed a parametric study with those modified membranes.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Technical Paper

Optimizing Thermal Efficiency of a Multi-Cylinder Heavy Duty Engine with E85 Gasoline Compression Ignition

2019-04-02
2019-01-0557
Gasoline compression ignition (GCI) using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation (EGR)) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of EGR appears more practical. Previous studies with 93 AKI gasoline demonstrated that the port and direct injection strategy exhibited the best performance, but the premature combustion event prevented further increase in the premixed gasoline fraction and efficiency.
Technical Paper

Opportunities for Medium and Heavy Duty Vehicle Fuel Economy Improvements through Hybridization

2021-04-06
2021-01-0717
The objective of this study was to evaluate the fuel saving potential of various hybrid powertrain architectures for medium and heavy duty vehicles. The relative benefit of each powertrain was analyzed, and the observed fuel savings was explained in terms of operational efficiency gains, regenerative braking benefits from powertrain electrification and differences in vehicle curb weight. Vehicles designed for various purposes, namely urban delivery, utility, transit, refuse, drayage, regional and long haul were included in this work. Fuel consumption was measured in regulatory cycles and various real world representative cycles. A diesel-powered conventional powertrain variant was first developed for each case, based on vehicle technical specifications for each type of truck. Autonomie, a simulation tool developed by Argonne National Laboratory, was used for carrying out the vehicle modeling, sizing and fuel economy evaluation.
Technical Paper

On-Track Measurement of Road Load Changes in Two Close-Following Vehicles: Methods and Results

2019-04-02
2019-01-0755
As emerging automated vehicle technology is making advances in safety and reliability, engineers are also exploring improvements in energy efficiency with this new paradigm. Powertrain efficiency receives due attention, but also impactful is finding ways to reduce driving losses in coordinated-driving scenarios. Efforts focused on simulation to quantify road load improvements require a sufficient amount of background validation work to support them. This study uses a practical approach to directly quantify road load changes by testing the coordinated driving of two vehicles on a test track at various speeds (64, 88, 113 km/h) and vehicle time gaps (0.3 to 1.3 s). Axle torque sensors were used to directly measure the load required to maintain steady-state speeds while following a lead vehicle at various gap distances.
Journal Article

On-Track Demonstration of Automated Eco-Driving Control for an Electric Vehicle

2023-04-11
2023-01-0221
This paper presents the energy savings of an automated driving control applied to an electric vehicle based on the on-track testing results. The control is a universal speed planner that analytically solves the eco-driving optimal control problem, within a receding horizon framework and coupled with trajectory tracking lower-level controls. The automated eco-driving control can take advantage of signal phase and timing (SPaT) provided by approaching traffic lights via vehicle-to-infrastructure (V2I) communications. At each time step, the controller calculates the accelerator and brake pedal position (APP/BPP) based on the current state of the vehicle and the current and future information about the surrounding environment (e.g., speed limits, traffic light phase).
Journal Article

On-Road Validation of a Simplified Model for Estimating Real-World Fuel Economy

2017-03-28
2017-01-0892
On-road fuel economy is known to vary significantly between individual trips in real-world driving conditions. This work introduces a methodology for rapidly simulating a specific vehicle’s fuel economy over the wide range of real-world conditions experienced across the country. On-road test data collected using a highly instrumented vehicle is used to refine and validate this modeling approach. Model accuracy relative to on-road data collection is relevant to the estimation of “off-cycle credits” that compensate for real-world fuel economy benefits that are not observed during certification testing on a chassis dynamometer.
Technical Paper

On-Road Testing to Characterize Speed-Following Behavior in Production Automated Vehicles

2024-04-09
2024-01-1963
A fully instrumented Tesla Model 3 was used to collect thousands of hours of real-world automated driving data, encompassing both Autopilot and Full Self-Driving modes. This comprehensive dataset included vehicle operational parameters from the data busses, capturing details such as powertrain performance, energy consumption, and the control of advanced driver assistance systems (ADAS). Additionally, interactions with the surrounding traffic were recorded using a perception kit developed in-house equipped with LIDAR and a 360-degree camera system. We collected the data as part of a larger program to assess energy-efficient driving behavior of production connected and automated vehicles. One important aspect of characterizing the test vehicle is predicting its car-following behavior. Using both uncontrolled on-road tests and dedicated tests with a lead car performing set speed maneuvers, we tuned conventional adaptive cruise control (ACC) equations to fit the vehicle’s behavior.
Journal Article

On the Accuracy of Dissipation Scale Measurements in IC Engines

2014-04-01
2014-01-1175
The effects of imaging system resolution and laser sheet thickness on the measurement of the Batchelor scale were investigated in a single-cylinder optical engine. The Batchelor scale was determined by fitting a model spectrum to the dissipation spectrum that was obtained from fuel tracer planar laser-induced fluorescence (PLIF) images of the in-cylinder scalar field. The imaging system resolution was quantified by measuring the step-response function; the scanning knife edge technique was used to measure the 10-90% clip width of the laser sheet. In these experiments, the spatial resolution varied from a native resolution of 32.0 μm to 137.4 μm, and the laser sheet thickness ranged from 108 μm to 707 μm. Thus, the overall resolution of the imaging system was made to vary by approximately a factor of four in the in-plane dimension and a factor of six in the out-of-plane dimension.
Technical Paper

Numerical and Optical Evolution of Gaseous Jets in Direct Injection Hydrogen Engines

2011-04-12
2011-01-0675
This paper performs a parametric analysis of the influence of numerical grid resolution and turbulence model on jet penetration and mixture formation in a DI-H2 ICE. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located single-hole injector nozzle. The simulation includes the intake and exhaust port geometry, in order to account for the actual flow field within the cylinder when injection of hydrogen starts. A reduced geometry is then used to focus on the mixture formation process. The numerically predicted hydrogen mole-fraction fields are compared to experimental data from quantitative laser-based imaging in a corresponding optically accessible engine. In general, the results show that with proper mesh and turbulence settings, remarkable agreement between numerical and experimental data in terms of fuel jet evolution and mixture formation can be achieved.
X